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Pinned polymer model of posture control
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A phenomenological model of human posture control is posited. The dynamics are modeled as
an elastically pinned polymer under the influence of noise. The model accurately reproduces the
two-point correlation function of experimental posture data and makes predictions for the response
function of the postural control system. The physiological and clinical significance of the model is

discussed.

PACS number(s): 87.45.Dr, 05.40.+j

I. INTRODUCTION

The human postural control system is highly evolved
and complex. Recent analyses of quiet-standing posture
data suggest that stochastically driven dynamics may
be present in the system [1,2]. Here we present a phe-
nomenological Langevin equation that captures the un-
derlying physical mechanisms and reproduces the exper-
imental posture data. The model is simple enough to
allow quantitative analyses. We obtain correlation and
response functions for the model and relate the properties
of these functions back to physiological origins.

In Ref. [1], Collins and De Luca measured and analyzed
the time-varying displacements of the center of pressure
(COP) under the feet of quietly standing subjects. They
found that the dynamics of the COP time series were
not consistent with low-dimensional chaos. Subsequently,
they constructed the two-point correlation function in the
anteroposterior (front-to-back) direction, y, defined by
C(tz —t1) = {(y(t2) — y(t1))?), from the data. An exam-
ple is shown in Fig. 1. Collins and De Luca found that
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FIG. 1. A resultant log-log plot (solid line) of the COP
two-point correlation function [C(7), where 7 is time interval]
for a healthy young subject. This plot was generated from five
90-s COP time series. Also shown are the fitted regression
lines (dashed lines) and the computed values of the scaling
exponents (H) for the respective scaling regions.
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for healthy young subjects the COP two-point correla-
tion function exhibited three approximate scaling regions
where C (1) ~ 72H [3]. In the first region H = 4/5, in the
second H = 1/4, and in the third H = 0. These regions
can be described as: (1) driftlike or free streaminglike,
(2) diffusive, and (3) bounded or saturated [4].

The above results draw analogies to several models of
continuum stochastic dynamics. There are similarities,
for instance, to the behavior of the dynamic fluctuations
of surface or interface growth [5,6], flux lines in super-
conductors [7], and polymers [8]. The scaling exponent
of H =~ 1/4 in the second region of the posture data
(e.g., see Fig. 1) is present in the “free” theories of the
above examples (which are processes where nonlineari-
ties do not play a role), or in the transient region before
a crossover to an asymptotic regime for weak nonlinear-
ities [6]. The third region in the posture data indicates
that there is a time scale in the system which cuts off any
possible long-time correlations. This implies the lack of
a symmetry or conservation law. In the case of a flux
line or a polymer, this would arise from the breaking of
translational symmetry by pinning to a fixed region in
space [7,8]. The first region in the posture data concerns
short-time inertial effects and is not often considered in
these physical phenomena. However, it is significant for
human posture control.

II. MODEL

We consider the transverse motion of the human body
in one spatial dimension y. We would like to model the
dynamics of this motion as a function of the height vari-
able z and time t. The simplest continuum model of the
body is that of a flexible string or polymer under tension
with friction

PO}y + udyy = T2y, (2.1)
where p is the mass density, u is a friction coefficient,
and T is the tension. In upright stance, the body has an
inverted pendulumlike instability which is countered by
a control system. The precise form of this control system
is highly complicated and depends on many physiological
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processes [9]. A simple approximation is to consider the
body to be “pinned” to the upright position by an elastic
force. In terms of the model, this would amount to em-
bedding the polymer in an elastic sheet. The corrections
of the control system cannot always be perfect [10] and
this is modeled by a stochastic force. The entire postural
control system is reduced to an elastically pinned poly-
mer under the influence of stochastic fluctuations. The
full equation takes the form

pO2y + udy = T2y — Ky + F(z,t), (2.2)

where K is the elastic restoring constant of the pinning
and F is the stochastic driving force.

Equation (2.2) can be put into a more convenient form
for analysis by dividing through by p and relabeling the
constants:

B}y + Oy = vB2y — ay + n(z,t). (2.3)
In this form, 3 and a~! have dimensions of time, and v
has the dimensions of length squared divided by time. By
rescaling the length, the parameter v can also be elimi-
nated; however, in order to keep length and time dimen-
sions explicit, it is retained. The free parameters in the
system are the two time scales 3 and a~! and those as-
sociated with the stochastic forcing. The deterministic
part of Eq. (2.3) is standard and describes the dynamics
of a string under tension, with friction and embedded in
an elastic membrane.

The stochastic forcing 7(z,t) is assumed to have a cor-
relator of

(n(z',t')n(z,t)) = D(t' — 1)8(2' — 2).

It is uncorrelated along z but can possess temporal cor-
relations represented by the function D(7). In Fourier
space we assume the correlator can be approximated by
the form

(2.4)

PNy 627
(n(k,w)n(k’,w")) = 2Dm

x(2m)%6(w + w)(k + k).  (2.5)
This assumes that for long times (¢ 3> 6 1) the forcing is
uncorrelated but for short times it has some power-law
scaling, (n(w')n(w)) x w™27§(w’ + w). These short-time
correlations are assumed to arise from neuromuscular ef-

J
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fects, such as intrinsic muscle force fluctuations and/or
feedback-loop delays. The values of the parameters will
be constrained by the data. The form of the stochastic
forcing will lead to nonstandard scaling behavior. For
instance, it has been shown that temporal correlations
in the stochastic forcing for interface growth can lead to
different scaling [11].

The dynamics of the model are to be compared to the
measured motion of the COP. It is assumed that this
motion can be effectively mimicked by the motion of a
particular point along the polymer (body). Hence, it is
necessary to compute the two-point correlation function
C(t2 — t1) = ((y(20,t2) — y(20,t1))?) taken at a specific
point z = 2o. In actual posture control for quiet stand-
ing, the feet are essentially fixed to the floor and hence
the pinning strength is infinite there. As one goes up-
wards, the pinning strength is reduced. The analysis of a
model with inhomogeneous pinning, however, is difficult.
Nonetheless, since only the motion at one point along the
body is required, we can consider a model with an “av-
eraged” constant pinning strength. We also assume that
the boundary effects are unimportant and consider an in-
finitely long polymer. In this case, every point along the
polymer will have equivalent dynamics. These approxi-
mations are valid for strong pinning and for the dynamics
near the center of mass away from the boundaries which
we assume is a location that effectively mimics the COP
dynamics.

The correlation function can be computed from
Eq. (2.3). It is most convenient to analyze the prob-
lem in the Fourier domain. The ensuing analysis is stan-
dard. (Edwards and Wilkinson use similar techniques
to analyze a stochastically forced diffusion equation in
Ref. [5].) Fourier transforming Eq. (2.3) in space and
time and solving for y(k,w) yields

n(k,w)

k = .
y(k,w) —Bw? + vk? 4+ o — iw

(2.6)

The autocorrelation function is then formed to yield
2D8%7 (27)28(w + w')o(k + k)
[(Bw? — vk? — a)? + w?](w? + §2)7

(2.7)

(y(k, w)y(k', ') =

where Eq. (2.5) has been applied.
Inverse Fourier transforming in o', k’, and k yields

vz, 0y w)) =208 [ oo

where the integration is along the contour F. We want
the single-point temporal correlations so we set z = 2’ =
zo in Eq. (2.8) and obtain

S(w) = (y(20,w)y(20,w))

D§%v 1
A R wEe T
(2.9)

eik(z—-z')
: (2.8)
—vk2 — a)z + wZ](L‘JZ + 62)7
[
The two-point correlation function is given by
C(r) =2[S(0) — S(7)], (2.10)

where S(7) is the temporal autocorrelation function ob-
tained by inverse Fourier transforming Eq. (2.9).

The different scaling regions in frequency and, hence,
time can be obtained by taking suitable limits of
Eq. (2.9). Note that vk?/w, Bw, and a/w are dimen-
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sionless quantities. With this in mind, Eq. (2.9) can be
rewritten as

D 1
T w?(w? 4 §2)7

S(w) =

5%
* /F [(Bw — afw — vkZJw)? + 1] dk.  (2.11)

Consider the range of parameters where 371 ~ § > w >
a. Then Eq. (2.11) can be approximated by

D o° 1

where u = +/v/wk. The integral is convergent so in
this regime S(w) o< w™3/2. By dimensional analysis, this
translates to a scaling behavior of S(7) ~ 7!/2, in the
time domain [12]. This corresponds to the middle scaling
region (where H =~ 1/4) in the COP data of Fig. 1. This
scaling region is valid in the range 8 < 7 < a™ L.

Now consider the long-time region where w € a <
B! ~ 6. Equation (2.9) then takes the form

D [* 1
S(w)N;/_wmd’“

The integral in Eq. (2.13) is convergent so we find that
S(w) < w? which gives S(t) ~ 0 for 7 > a~!. This
corresponds to the saturated region (where H = 0) in
the COP data in Fig. 1.

Finally, in the short-time region w > 871 > 1, § ~ 3,
we have w? > a and w?83 > 1 which leads to

(2.13)

D62~/ oo
S(w) ~ T2 33231 2 [m (1= v2)2 t 2 du  (2.14)
where
vk 1

In the limit w — oo (¢ — 0), the integral in Eq. (2.14)
is proportional to € ! so S(w) behaves as w—2(1+7),
By dimensional arguments we find in the time domain
S(1) ~ (),

The behavior of the complete S(w) is shown in Fig. 2.
The calculated two-point correlation function takes the
form corresponding to the COP data in Fig. 1. Fitting
the parameters to the data in Fig. 1 yields values of
alx~10s,8~0.5s, and v~ 0.72.

The saturation width C'(7 = co) can also be estimated.
This value represents the maximum transverse extent the
body attains during quiet standing. From Eq. (2.10) we
see that C(oc0) = 25 (7 = 0) since S(7 = co) = 0. Hence,
C(o0) =28(7 =0) =2 [*_ S(w)dw. For simplicity, con-
sider v = 0, i.e., no correlations in the noise. The tem-
poral correlations in the system noise in healthy subjects
only extend over short time periods and do not play a
role in the saturation width. By making the substitution
u = /B/aw and v = y/v/ak in Eq. (2.9) we obtain
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FIG. 2. The form (not to scale) of the autocorrelation func-
tion S(w, z = 0) in the frequency domain for the pinned poly-
mer model.

D co  poo du dv
Sr=0 =275 /_oo [w (u? —v2 —1)2 +u?/af
(2.16)
D [> d
~ \/E/;oo (Uz _+_vl)3/2’ (217)

i.e., C(00) < D/+/va. By absorbing the constants into
D, an effective noise amplitude D.g = C(00)y/a can be
defined. (Recall that the tension parameter v is not in-
dependent and could have been scaled out into the noise
amplitude from the outset.) From the COP data in Fig. 1
we get Deg =~ 5.8 mm? s—1/2,

The values of the respective parameters have implica-
tions for the postural control system. The nonzero value
of v implies short-time correlations in the noise. This cor-
roborates the open-loop control hypothesis in Refs. [1,2].
In these short times, the “kicks” produced by the system
are correlated to each other and do not react to the po-
sition of the COP. The body responds inertially to these
kicks, resulting in driftlike dynamics. The second scal-
ing region of H ~ 1/4 represents “diffusive” scaling. In
this region, the dynamics involve a balance between the
damping, tension, and uncorrelated noise of the system.
Physically this implies that the body aligns itself inde-
pendently of whether or not it is upright. In the saturated
region, the pinning is finally felt and the body then at-
tempts to return itself to an upright position. The noise
amplitude does not affect the scaling regions, but it does
establish the saturation width. The physiological signifi-
cance and relevance of these and different parameters are
discussed in Sec. IV.

III. RESPONSE TO PERTURBATIONS

With the pinned polymer model, the response to a per-
turbing force can also be calculated. From a physiologi-
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cal standpoint, this is important given that a significant
number of contemporary investigations in posture control
have involved analyses of the measured response of the
human body to various external perturbations [13]. This
issue is discussed further in Sec. IV. (The calculation of
the response function for the pinned polymer model is
similar to the calculation of the response function for a
cold, collisionless, electron plasma wave [14].)

To obtain the response function consider the polymer
model Eq. (2.3) with an imposed perturbation

BOZy + By = vO%y — ay + n(z,t) + €(2,t), (3.1)

where €(z,t) is a spatiotemporal perturbation. For sim-
plicity we consider

€(z,t) = €6(2)6(t). (3.2)
This corresponds to an impulsive kick at z = 0. We
Fourier-Laplace transform Eq. (3.1) and obtain
~w?By — iwy = —vk®y — ay + fj(w, k) + € (3.3)
The response function is defined as
9(k,w) = <f5_?e;> Y iw1+ vk? + o’ (34)

Inverse transforming leads to

(2,t) = dw e—iwt * %eikt 1
giz:t) = 27r oo 2T —w2B —iw+vk2+a’

(3.5)
The k integral can be performed to yield
1 e~ lzlV/(—Bw?—iwta)/v
z,t) = ——— | dwe ™! . (3.6
9(=1) 47"\/’43/1, V-—PBw? —iw+a (36)

By making the transformation w — w — 7/28, the re-
sponse function takes the form

e—t/28 > te—Z\/a.z—m2
9(zt) = — ey A dwe Ta— (3.7)
where
_ V4aB -1 _ /B

For 4aB > 1, there are branch points at w = +a. By
definition there is no response before t < Z so the Laplace
contour must be above the branch cut from —a to a. For
t > Z, we can close the contour in the lower half plane
and collapse the contour around the branch cut. The
path of integration is then taken along the two sides of
the cut. The integral is completed with the substitution
w = asin ¢ and some algebraic manipulations to yield

e~t/28 1 27
2/vp3 27r

where 6(7) is the step function. The integral in Eq. (3.9)
is the integral representation for the zeroth-order Bessel
function so

9(z,t) =0(t — Z)S—— glavti—Z%sind gy (3.9)
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FIG. 3. Three representative response functions corre-
sponding to the parameters: v = 0.25, 8 = 1, and a = 0.5
(dotted line), a = 0.25 (solid line), o = 0.128 (dashed line).

,t) =0(t — J V2 — Z2), .

a(zt) =0t - 2) 5 — 2\/— o(a ) (3.10)
For the case where 4a3 < 1, the branch points lie along
the imaginary axis. A rotation in the complex plane by

m/2 in Eq. (3.7) leads to the result

e hoalVE — 73)

where Ij is the zeroth-order modified Bessel function. At
the critical value of 4a3 = 1, the response is given by

9(z,t) =0(t — 2) (3.11)

—t/2p8
D377
If the response is measured at the location of the per-
turbing kick (z = 0), then we can set z = 0 in the above
expressions. The response for different values of 3 and «
for z = 0 are shown in Fig. 3. For small values of a, the
response time is on the order of 2. If 3 is very small, |a|
becomes very large and the asymptotic form of the mod-
ified Bessel function can be used, i.e., Io(z) ~ e*/v2mz
for £ — oco. This then leads to the expected damped-
diffusive response behavior of g(0,t) ~ e~*t/v/4nvt. For
near-zero pinning (o ~ 0), we obtain a power-law re-
sponse behavior of g(0,t) ~ t=1/2,

g(z,t) =0(t — (3.12)

IV. DISCUSSION

With the pinned polymer model, posture control is
characterized in terms of four parameters: (1) the onset-
of-damping time scale 3, (2) the onset-of-pinning time
scale o™ !, (3) the short-time noise correlation exponent
v, and (4) the effective noise amplitude D.g. These pa-
rameters could be used to form the basis of a physiologi-
cal and clinical classification scheme. For instance, devi-
ations in a parameter or set of parameters from those for
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a population of age-matched, healthy individuals could
serve to indicate a possible balance disorder. Each pa-
rameter has some physiological implication and so the
model can make predictions of how various physiological
changes (e.g., due to injury or disease) would alter the
COP data.

For the quiet-standing posture data of healthy sub-
jects [1,2], nonlinearities are not necessary — it appears
that the pinning term is strong enough to negate any non-
linear effects. However, this may not be the case for cer-
tain patients with balance disorders. For instance, non-
linearities will certainly play a role for large transverse
excursions. Obvious effects include stepping or falling.
These catastrophic effects lie outside the realm of the
model. Weak nonlinear effects could be incorporated by
allowing the pinning coefficient a to be a function of y.
This would be manifested as terms of the form y™ in
Eq. (2.3). The y —» —y symmetry of Eq. (2.3) could be
broken for even n. This would make sense from a biome-
chanical standpoint since anteroposterior movements are
intrinsically asymmetric [15].

The quiet-standing posture data [1,2] showed that
short-term correlated noise is present in the postural con-
trol system, i.e., for short times the kicks produced by the
system are temporally correlated. This finding was con-
firmed by the model, i.e., the stochastic forcing needed to
have some power-law scaling over short times in order for
the model’s output to reproduce the experimental pos-
ture data. These results imply that during undisturbed
stance the postural feedback mechanisms are not neces-
sarily operational over short periods of time (7 < 1 s).
This is in line with the open-loop control hypothesis of
Collins and De Luca [1,2]. Physiologically, this scheme
could arise as a result of inherent noise, feedback-loop de-
lays, feedback thresholds, and/or sensory “dead zones.”

A discrete version of this model would involve a chain
of coupled and bounded random walkers with short-time
correlations. The coupling between the walkers is re-
quired for the diffusive region. The pinned polymer
model considers an infinite chain, but a finite number
of coupled random walkers would probably suffice. The
correlations could arise from time delays in the stepping
probabilities of the random walkers [16]. The advantage
of a continuum version is the ease in which calculations
can be made.

Various behaviors could arise for different parameter
regimes. For instance, if the damping and pinning time
scales were roughly equal (3 ~ a~!), then the diffusive
region would disappear. The COP would essentially drift
until it was corrected by the elastic pinning. It is possi-
ble that a control strategy involving such dynamics would
be advantageous for individuals who require quick move-
ments (e.g., athletes) since the dynamics imply that the
damping of the overall system is relatively weak. An in-
dividual utilizing such a strategy would be metastable
and capable of making quick adjustments.

From the standpoint of the model, balance problems
could be manifested in several ways. For instance, if the
pinning strength were small, the COP would fluctuate
diffusively until its transverse displacement exceeded the
stability (balance-maintenance) threshold — this could

result in a fall. If the damping were also weak so that
B > a1, then oscillations would occur before saturation.
Falls could be triggered if the amplitude of these oscilla-
tions was large enough to exceed the stability threshold.
Similarly, if the noise amplitude was sufficiently large,
then the amplitude of saturation could exceed the sta-
bility threshold — as with the aforementioned scenarios,
this effect could trigger a fall. From the above discus-
sion, it is clear that the pinned polymer model may be
useful for extracting clinically relevant information from
quiet-standing COP time series.

The pinned polymer model has significant utility for
understanding posture control quantitatively. As noted
above, the model can completely characterize the statisti-
cal behavior of quiet-standing COP trajectories in terms
of four parameters. Once these parameters are fixed from
the “quasistatic” posture data, the model can be used to
make a prediction of the dynamic response of the pos-
tural control system. The model thus enables a direct
comparison between the quasistatic and “dynamic” pos-
tural control systems. From a physiological standpoint,
this is important because it allows one to test the hy-
pothesis that the two control modes are equivalent, i.e.,
under quiet-standing and dynamic conditions, the pos-
tural control system utilizes the same mechanisms. This
hypothesis has not been addressed previously because of
the lack of a suitable quantitative model or approach.

Experiments are under way to measure the dynamic
response of the human postural control system. If
the parameters from the quiet-standing posture data
match those of the response function, this would support
the aforementioned hypothesis and further validate the
pinned polymer model. It is expected that the dynamic
response will delineate when the two mechanisms differ.
For large perturbing kicks, it is possible that nonlinear
effects will appear and cause a deviation from linear re-
sponse.

The model does not address the actual neuromuscular
control mechanisms involved in balance regulation. For
instance, it is unknown whether the stochastic forcing is
intrinsic in the output of skeletal muscles or whether it
arises from a combination of incomplete sensory informa-
tion, feedback-loop delays, and/or feedback thresholds.
In order to address these issues, a detailed model of pos-
ture control that accounts for neurophysiological com-
ponents and body mechanics is required. However, the
pinned polymer model does allow a quantitative charac-
terization of posture control and an assessment of physio-
logical consequences. Moreover, any detailed model must
reduce to the pinned polymer model at a coarse-grained
level.
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